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ABSTRACT 

Computational methods a r e  developed .to determine the proton 
energy  degradation and flux attenuation as  a function of penetration 
depth in var ious rra t e r i a l s .  
es t imate  the energy dceposition or t issue dose r a t e  at a given depth 
o r  on the surface of a shielded #object. 
used and the i r  accuracy  a r e  a prime pa r t  of this  study. Numerous 
compar isons  a r e  made with resu l t s  of other worker's in th i s  f ield.  

The pr imary  purpose of this work is to 

Detailed analysis  of the methods 
, '  ' 
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I. INTRODUCTION 

There  have been severa l  calculational methods developed to  
determine the proton energy degradation and flux attenuation a s  a function 
of penetration depth in various mater ia ls ,  the ultimate purpose being 
to es t imate  the energy deposition o r  dose ra te  a t  a given depth o r  on the 
surface of a shielded target  such as  a man.  The methods range f rom 
fair ly  simple approximations to complex and tedious numerical  methods.  
However, most of the m-etheds a r e  essentia!!y the s a m e  in thzt their Y 

assume  the so-called "straight-ahead model.  In this  model,  the 
assumption i s  made that energetic protons lose energy by ionization 
losses  associated with the removal of bound electrons in the shield 
ma te r i a l s ,  with no subsequent change in particle direction. Elas t ic  
scattering is assumed to be strongly in the forward direction with a 
negligible energy loss and hence i s  ignored a s  a slowing-down mechanism.  
However, in most  of these models,  an attenuation correct ion i s  made  
for non -elastic collisions that completely remove the p r imary  proton. 
The degree of sophistication in the non-elastic collision calculation is  
a function usualiy of the shield thickness and the subsequent t reatment  
of the secondary par t ic les  l iberated.  

The methods introduced by the wr i t e r  a r e  in the same category 
as  those discussed above. 
will help in obtaining reliable solutions in a s impler  manner than is now 
available.  

It is hoped that the innovations presented 

11. ENERGY SPECTRA OF PRIMARY PROTONS 

I t  s eems  to follow that regardless  of the methods o r  models used,  
the slowing-down energy loss of the pr imary protons i s  assumed to be 
dependent only on the ionization loss  from bound electrons'  which is 
given by various modifications of the Bethe -Bloch formula for  stopping 
power; 

Hydrogen shields should probably be excepted 

An additional discussion on this. point m a y  be found in Section IV of this 
r epor t ,  "NonLelastic Proton Collisions. I '  



where E i s  the kinetic energy of the proton, Z i s  the atomic number ,  
V = p C i s  the proton velocity, m i s  the electron m a s s ,  N i s  the 
number of a toms of the mater ia l  per cm3 , I i s  the average ionization 
potential of the mater ia l ,  and C i s  a correct ion t e r m  for e lectron-  
shell  binding. 

A quantity of grea te r  utility in many of the computational scheme s 
i s  the range of a proton which i s  given by 

The dimensions of stopping power, S (E) ,  a r e  usually (Mev-cm2 /gm) 
and therefore for the range the dimensions a r e  (gm/cm2)  from Eq .  (2)  
In order to see how the above quantities enter  into the calculation of 
proton penetration, the following development i s  presented.  F igure  l a  
i l lustrates the parameters  of the .l. problem, where E denotes the inci-  
dent energy of a proton and E". the energy a t  depth X . 

Now if cer ta in  l iber t ies  a r e  granted it can be seen that the proton 
energy in going from E to E" might be represented  by an analytical 
relationship such a s  

where ,  obviously, E':' i s  a function of X .  Hence, the proton differential 
energy flux a t  depth X > 0 may be related to the flux a t  depth X=O by 
a simple change of variable technique denoted by 

dE" . dg (E "') 
= c $ ~  %(E':')) I dE':' I (4) 

Of course ,  the practicali ty of represent ing the flux a t  depth X , 
a s  shown in Eq .  (4) ,  depends on the ability to find a usable relationship 
between the energy E and E". However, the ability to wri te  Eq .  ( 3 )  

2 
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in a nice mathematical  expression docs not follow f r o m  direct  applica- 
tion of the Bethe-Btoch formula.  
solution to the problem, one can r e s o r t  to the following exerc ise  in 
functional manipillation. 

In order  to a r r i v e  a t  a pract ical  

The proton range i s  assumed to be represented by a n  empir ical  
curve fit, o r  even a s  a tabulated set  of numbers ,  in the case  of a pure 
numerical  approach. Thus,  i f  

R = F.(E) [ g m / c m 2 ]  (5)  

i s  used to denote the range of a proton of energy E incident on a m a -  
t e r i a l  denoted by the subscript  Z , then a t  the depth X (gm/cm2)  in 
mater ia l  " Z " ,  the energy of the proton i s  reduced by an amount A E  
associated with an equivalent reduction in range given by AR = X .  
Thus we can wri te  

R - X  = F, (E - A E )  . ( 6 )  
Now E - AE = E" , the energy of the proton a t  depth X , and since 
R = F Z ( E )  we write 

F, (E)  = X t F, (K"'), and 

Thus,  Eq .  ( 7 )  provides the relationship required by Eq .  ( 3 ) .  However, 
there  a r e  some obvious restr ic t ions to the functional form which the 
approximation of R(E)  can a s sume .  F o r  this reason ,  use i s  often 
made  of the numerical  approaches to finding the proton differential energy 
flux a t  a depth X . However, it should go without saying that the num- 
ber  of functional fo rms  which a r e  amenable to the manipJlations indi-  
cated in Eq .  (7) a r e ,  mathematically speaking, without l imits .  The 
most  popular attempt to a r r i v e  a t  a simple solution to the proton pene- 
tration problem i s  that given by assuming the range of a proton in a 
mater ia l  " Z "  can be representeg simply by 

(8) 
r R = a E  , 

where the coefficient "a" is dependent on the mater ia l ,  and the power 
I l r "  only slightly dependent on the " Z "  number.  ' In fact ,  a value of 

This type of approximation dates back to 1947. R . R .  Wilson, Phys .  
Rev. ,  71, 385L, Chap. 2 2 ,  Sec .  3 (1947). 

-- 
-- -_ 
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r E 1. 78 will siiffice f o r  Z = 6 to 3 0 .  This  choice of range formula 
is usually considered valid f r o m  about 10 to 250 Mev with a maximum 
e r r o r  of 
range based on the Bethe -Bloch formula for  stopping pDwer. 
i l lustrat ion of the techniques that can be used to a r r i v e  a t  a simple 
formula for p r imary  proton penetration the following i s  presented: 

5% in  approximating the various numerical  integrations for 
A s  an 

Assume  that the incident proton energy spec t rum is given by 

and that for  the slab thickness and energy spread  the range i s  sufficiently 
well approximated by E q .  (8);  then, from E q .  ( 7 ) ,  we write 

f rom which it is  readily seen that 

and 

1’ 
F r o m  Eq.  ( l l ) ,  it follows that if the slab thickness i s  exactly 
the incident proton of energy E o  
Next we find 

X = aEo , 
will jus t  r each  zero energy at  depth X .  

(E:: + J) y- r - I  

Substituting the appropriate r e su l t s  of E q s .  ( 9 ) - ( 1 2 )  into E q .  (4) we 
obtain 

5 



where Eq. (11) must  be satisfied for the l imits .  
general  appearance of the transformations between Eqs .  (9) and (1 3) .  

F igure  l b  depicts the 

Equation (1 3) gives the proton differential energy spectrum at 
depth X for the incident spectrum given in Eq.  ( 9 ) ,  i f  we consider only 
ionization lo s ses  and the range energy equation, R = a E r .  
the above formulation will be terminated and the improvisions developed 
by the writer will be undertaken. 

At the present  

The main improvement,by the wr i te r  i s  the introduction of an  
approximation for the proton range which r ep resen t s  the theoretical  
data,  such a s  presented in S ternheimer ' s  a r t ic le  [ 1 ] , with an accuracy  
of 
Also,  the algebraic manipulation i s  essent ia l ly  a s  e lementary a s  that 
for  the relationship, R = a E r .  

f 470, o r  better , ,  for energies  f rom around 5Mev to over 1 , 2 0 0  MeV. 

The new empir ical  formula for the range is 

R(E)  = a 2b In (1  t 2bEr) , (14) 

where a ,  b, and r a r e  determined by fitting the range data of Ref. [ 21 
with the requirement to minimize the maximum relative e r r o r  f rom 10 
to  1000 MeV. If, in Eq .  (14), 2bEr <<  I ,  then R = - E r .  F o r  example,  
in carbon, r = 1 . 7 8 ,  a = 2 . 3  x , and b = 2 x and we see  that 
i f  E = 200 MeV, 2bEr = . 0 5  and using R r a E r  one obtains an e r r o r  to 
E q .  (14) of about 2 .  5%. This good agreement  i s  not obtained, however, 
with a larger Z number a t  such a large value of E . 

Figure 2 depicts an  e r r o r  analysis  of the approximating function 

Z <  2 0 ,  a value 
of Eq .  (14) compared to data presented in Ref. 
efficients of r . 
of r =' 1 .  78 i s  adequate, and for  Z >  20, r s  1 .  75 should be used. 
However, in  the case  of mixed ma te r i a l s  of medium and low Z , it 
s eems  that a compromise may  be made  and that for a given calculation, 
one choice of r adhered to ,  perhaps I .  78. Table I provides a summary  
of different values of a and b for different mater ia l s  with r of 1 .  75 
and 1. 78. 
t i ssue;  this will be discussed in  the development of the methods used 
by the w r i t e r  for dose calculations. 
the e r r o r  in the range for aluminum when using Eq.  (14) to the e r r o r  in 
range when using R = aEr .  
other mater ia ls  than those shown in Table I ,  the following relationships 
6 

2 for  two different co-  
In general  practice it appears  that for 

It should be noted that a value of r = I .  8 is  a l so  given for 

F igure  3 i s  a comparison of 

Because of the possible des i re  to employ 
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M a t e r i a l  

C a r b o n  

A l u m i  nurn 

[r o n  

Copper  

S i lver  

Tung sten 

Po lye the 1 e ne 

T i s s u e::: 

W a t e r  

A i r  

S i 0 2  

:lass 

- 

TABLE I 

C o e f f i c i e n t s  f o r  the Range  E q u a t i o n  

r = 1 .  75 

a b 

1 .  2x1 o - 6  
1 . 9 ~ 1 0 -  ' 
2.6x10-' 

2 .  7 ~ 1 0 - ~  

3 .  7 ~ 1 0 - ~  

4 .2x10- '  

1 .  l x l o - '  

1 .  2x10-6 

1 .  2x10-' 

I .  4x10-' 

I .  7x10-' 

2 .  1x10-6 

r = 1 .  78 

2 . 3 3 ~ 1 0 - ~  

2 .  7 7 ~ 1 O - ~  

3 . 2 6 ~ 1 0 - ~  

3 . 4 0 ~ 1  0 - 3  

- -  - - - - - -  

- - - - - - _ _  

1 . 9 5 ~ 1 0 - ~  

2.  11x10-3 

2 . 1 0 ~ 1 0 - ~  

2 .  ~ I x ~ O - ~  

2 . 5 8 ~ 1 0 - ~  

2 , 8 3 ~ 1 0 - ~  

2 . 0 x 1 0 - '  

3 .  0x1 o -6  
3 . 2 5 x 1 0 -  

2 .  5x1 0-' 

- - - - - - - _  
- - - - _ _ _ _  

I .  7x10-' 

2 .  ox10-6  

2 .  ox10-6  

2 .  1x10-6 

2 .8x10- '  

2 .  5x10- '  

.e. - 3  e,. = 1 .80 ,  a, = 1 . 9 4 3 ~ 1 0  , bo = 2 . 2 7 3 ~ 1 0 - ' .  
For s topping  power  in t i s s u e :  r o  

9 



were  established by the wri ter  and may  be used for obtaining the co-  
efficients a and b when detailed curve fi ts  a r e  not warranted.  

( a  = 1 . 6  x t 2 . 8 9 ~  fi 

f a  = 1 .  53 x t 2 .  33 x l . 0 - 4 f i  

where A i s  the m a s s  number and Z i s  the atomic number.  

The present  calculations will be pr imar i ly  l imited to Z <  
hence, for Z < 20 , we can wri te  the range equation a s  

2 0  ; 

1 . 5 3  t 2 .33  1 $ ( 1 . 6 ~ 1 0 - ~  f i ) E  1.781 
1 . 6  x 10-6 t fl R(E)  = 

(17) 

Even though the above equation i s  best  for 
practical shielding calculations the value of Z 
30 using r = 1 ,  78,  and the resu l t s  a r e  quite dependable if the shield 
thickness is  grea te r  than about two gm/cm2.  The reason  f o r  this is 
that in copper ( Z  = 29),  for example,  the range of a 10-Mev proton is  
only about 0 .  025  cm and a 10% e r r o r  in range (. 0025  cm)  a t  this energy 
i s  tr ivial ,  i f  compared to the total shield thickness.  
however that at higher energies  the range e r r o r  should be much smaller  
to maintain the above type of accuracy.  

Z <  2 0 ,  i t  i s  found that for 
can be extended to about 

It should be c lear  

Reverting to  the original problem of this section, we develop 
the following relationships using Eq.  (14) for the proton range. F r o m  
Eq. (7),  

>$ r 
In (1 t 2bE ) , a a 

z In (1 t 2bEr) = X t - 
2b 2b 

1 0  



or  

1 t 2bE 2bX 

1 t 2bE 

Solving for  E ,  we obtain 

*r l/r 
E = g(E*) = ( A t  BE ) , 

where 

B = exp (F) and A = - 1 ( B - 1 ) .  
2b 

F r o m  E q .  ( 1  9) i t  follows that 

and 

l/r .I. 

E-'' = o if E I A 

< < I ,  then A g x / a  and B g 1 .  
2bX - 
a 

(See Eq .  1 0 . )  F o r  example,  with carbon, 2bX/a = 1 .  7 1 7  x X 
and for X(- 10  gm k m 2 ,  the above approximation is quite valid.  The 
foregoing analysis  demonstrates  why the simple range formula ( R = a E r )  
gives good r e su l t s  when X i s  not too la rge  ( X I  2 0  grn/cm2 and 
E? ?50  Mev).' Next, the differentiation of g(E") gives 

I t  is  worth noting that if 

dg (E") 
dE'" 

E::: r - 1  

r -1 :%r 7 
(A-t-BE ) 

Substituting the above into Eq.  (4 ) ,  we obtain 

See discussion following Eq.  (14). 1 

1 1  



There a r e  two choices of the incident differential energy spectrum 
in vogue a t  present;  the first i s  that given by Eq.  (9) o r  e l se  a family 
of N such curves given by 

-9i 
HiE  , E i 5 E 5 E i S 1  

where i = I ,  2 ,  3 ,  . . . , N .  The second choice of representation is  given 
by the integral rigidity spectrum 

-PIP0 
N(>p) = No e (protons/cm2 ) ;  p > p1 

where p a n d  po a r e  in rigidity units of MV (millionvolts). F r o m  
Eq .  (24) the differential r igidity spectrum becomes 

In order  to represent  the above momentum rigidity units in 
energy (Mev) units,  it  i s  sufficient to use  the relativist ic relationship 
between variables given by (pze)2=E2 t2Emo o r  

p = )(E2t1876E i 2 6 )  

where 
of the proton in Mev uni ts) ,  p i s  in MV and E is in MeV. Next, using 
a change of variable technique, we obtain 

(ze) = 1 electron charge for protons,  mo=938 (the r e s t  m a s s  
2 

P(E)  -- 
4 ( E ) d E  = - d N ( > p ( E ) )  = e 1 I ,dE , p >  p1 , (27) 

Po 

Note that A V = work/q ; in basic physics,  the potential difference 
is thus defined and, hence,  Eq. ( 2 6 )  is dimensionally valid. 

m = 938.23 to 5 significant f igures .  
0 

1 2  



where 

- dP = (  E t m o  

dE vhL + 2moE 

Substituting dp/dE into Eq .  ( 2 7 ) ,  we obtain , dE, E' E, 
No ( E t  938) 

Po s2 t 1876E 
(28) 

; ( E ) d E  = ~ 

where 

E l  = d m  - 9 3 8 ,  

and 4 (E) h a s  the units of protons/crn2Mev. The validity of the above 
t ransformation follows f rom elementary probability theory of distribution 
functions o r  e l se  e lementary  calculus depending on the r e a d e r s  academic  
orientation. 

Refer r ing  to E q .  ( 2 2 )  i t  i s  of interest  to obtain the proton differen-  
t ia l  energy spec t rum a t  a depth X 
E q s .  (23) and (24) .  Using the incident spec t rum of E q .  (23) we obtain: 

using the incident spec t rums of 

where E q .  ( 2 0 )  mus t  be satisfied; B = exp(2bX/a) 
Using the rigidity spectrum of E q .  (24) we obtain (from Eq .  28): 

and A = (B- l ) /2b .  

: k r  - 1 
4 x(E''*) = No ( S  t 938) B E  exp ( -  v s 2  t 1876 s/p0) 

(30) 
.I. 

p 0 s r - l  dsL t 1 8 7 6 ~ ~  

where 

: ~ r  ' /r 
= ( A + B E  ) ; E"> *)'Ir and E l  =vp: t 879,844 - 938. 

13 



The use of 
(39) .  
depth X in aluminum a r e  given in F i g s .  4 and 5 i l lustrating the evalua-  
tion of Eqs.  (29)  and (30) .  

s was  simply to shorten the s ize  of the expression in E q .  
Examples of typical differential  energy spec t ra  as  a function of 

In the following work, throughout th i s  r epor t ,  the presentation 
of proton penetration r e su l t s  (dose,  flux, e t c .  ) applies equally well  to 
e i ther  plane s labs  with a no rma l  incident flux o r  a t  the center  of spherical  
shel ls  with an  incident isotropic  flux. This  is due to the s t ra ight-ahead 
na ture  of the proton slowing down in a media ,  and the fact  that  the units 
of differential f lux a r e  protons/cm2 -sec  -MeV-steradian. Thus,  i f  both 
t ime and direction a r e  integrated out, the units a r e  s imply protons/cm2 - 
Mev and the flux h a s  no directional dependence. 
tion i s  usually provided concerning the source of the spec t ra l  data .  
we a r e  told that the spec t ra  i s  for an  omnidirectional flux, then the 
r e su l t s  apply only to the center  of a sphere because of the (47r) factor  
implicitly contained in the total flux. 
a s  the reader  s e e s  f i t .  

However,  other in forma-  
If 

Otherwise the r e su l t s  a r e  applicable 

I t  i s  of some  in te res t  to  note in F i g s .  4 and 5 that the spec t rum ' s  

a t  which the spec t rum ' s  maximum 
maximum shifts to the right a s  the s:bab thickness inc reases .  
s imple matter to find the value of 
occur s  by solving the following equation for E"., 

It i s  a 
E"' 

.I. 

F o r  example using Eq.  (29)  fo r  ox(E")  one obtains 

Equation (32)  is plotted in F i g .  6 for t h ree  values of qi .  The slowing 
down media is  aluminum with r = 1 .  78, and 2b/a = 1 . 8  x 1 0-3  . 

14 
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111. MULTILAYER SHlELDS 

The. above discussion is  equally well applied to s t ra t i f ied l aye r s  
of different ma te r i a l s .  
In  order  to see  the nature  of the derivation for multiple l aye r s  of different 
mater ia l s ,  two layers  will be considered initially. 
le t  u s  define 

F igu re  7 i l lus t ra tes  the p a r a m e t e r s  involved. 

Refer r ing  to Eq.  (19)  

and consequently, 

(33) 
r r 

E o  = A l t B I E l  

where a l  and bl a r e  the ma te r i a l  coefficients of Eq .  (14); X l  r e f e r s  
to the thickness of the f i r s t  layer with Eo and E l  denoting the energ ies  
respectively incident on the f i r s t  layer  and t ransmit ted through the f i r s t  
l aye r .  
we obtain 

Now applying the relationship of E q .  (7)  to the second l a y e r ,  

r 
In (1  t 2b2 E l  ) = X2 t %- In ( 1  t 2b2 E21) ; 

a 2  
2 b 2  2b2 
- 

r 
Simplifying , 

r E1 = A2 t B2E2 (34) 

where  
1 and A2 = -- [B2 - 17 

2b2 
r 

Substituting El  of Eq. (34) into Eq.  (33 ) ,  we obtain 

Equation (35)  exp res ses  the energy  a t  a depth of X2 

second layer in t e r m s  of the energy incident on the f i r s t  l aye r .  
in the 

If th is  
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i s  repeated for N layers  one obtains: 

* :% >$r 
E r = A t B E  , 

::c 
where E i s  the incident energy on the first layer  and E is  the energy 
at the end of the Nth layer ;  and, 

A" = A1 t A2B1 t A3 B1B2 + . . . t AN B1 B2 B3 . . . B N - ~  , 

.J. 

B'r = BIB, B3 . . 
( 3 7 )  

BN 

where Bi  = exp (2:ixi) - , Ai = (Bi - 1)/2bi , and i = I ,  2 , .  . . , N .  

This  fairly simple representat ion of the energy a s  a function of depth 
and layer thicknesses  of different m a t e r i a l s  i s  brought about by the 
fact that r is assumed to be constant for a l l  ma te r i a l s  considered.  
In shield optimization techniques,  such a representat ion should be 
promising. Since Eq .  ( 3 6 )  has  the same form a s  Eq .  (19 ) ,  it follows 
that the coefficients A ,  B may  be replaced by A*, B* whenever mul t i -  
layer  shields a r e  considered.  Thus ,  a l l  resu l t s  obtained in  the preceding 
or  subsequent sections can be extended to multiple layers  by using 

r A*, B* for A ,  B. 
then for the ith layer  Bi = 1 ,  Ai  = Xi/ai and for N layers  

In the special  ca se  where 2bX/a <<  1 ,  i .  e . ,  (R r a E  ) ,  

It may  be desirable  at t imes  to obtain an est imate  of the proton 
transmis,sioii for two or  m o r e  stratif ied layers  of different ma te r i a l s  
but using only one ma te r i a l  for the attenuation. Thus ,  it is  necessa ry  
to find the equivalent thickness of the other layers  in  t e r m s  of the b s e  
mater ia l ,  

This  can be readi ly  done in the following manner .  First, we 
assume that for the base ma te r i a l ,  the simple power law holds for the 
range equation (R = aEr ) .  Then the thickness of the var ious layers  in 
t e r m s  of the base element becomes s imply,  
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where A denotes a m a s s  o r  material  number;  a denotes the coefficient 
of the range equation’ for the various mater ia l s ;  and the subscr ipt  
denotes the base mater ia l .  F o r  example, if a re l iable  but simple 
est imate  was desired for the proton dose r a t e  behind 5 gm/cm2 of 
Aluminum and 5 gms/cm2 of t i s sue ,  the following information m a y  be 
r ead  off a piot of dose r a t e s  versus  depth in aluminum by reading the 
dose r a t e  a t  the depth: 

P 

X 
tis sue 

(tissue) 
xAl = x ~ l t  a 

o r  

2 . 7 7  
2 . 1 1  10-3  

.I. 

XA1 = 5 gm/cm2 t (5  gm/cm2)  = 1 1 . 5 6  gm/cm2 
(40) 

Th?t the above technique i s  valid can be shown readi ly  by inser t ing 
X i  into Eq.  (38),  thus obtaining 

.I# -8- 

:Zr xp x XA 
Er  = E + -  +a = E 8 r + 3  + 2 (41) a p  a P  IaA) 

o r  

aA a 
P 

The last equation denotes the equivalent energy t ransformation 
if we had used the mater ia l  coefficients. 
Eq .  (39) gives the same resu l t s  a s  the simple power law approximation 
of the range equations provided the same power r 

Thus,  the substitution of 

i s  used for all the 

The values of a a r e  taken f rom Table I .  
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mater ia l s .  The utilization of the above simple relationships i s  of 
engineering importance for estimating depth dose due to p r imary  protons 
when only a simple curve i s  provided for the so-called "skin dose.  
See Section V on "Proton Dose Rate Calculations. ' I  

IV. NONELASTIC PROTON COLLISIONS AND SECONDARIES 

It was pointed out in the introduction to th i s  paper that e las t ic  
scattering off a nucleus by high energy protons (> 2 0  MeV) is highly 
forward with t r ivial  reduction in energy.  
valid for proton collisions in hydrogen but this problem will not be 
t rea ted  he re .  
straggling associated with energetic protons i s  an effect mainly due 
to elastic collisions with e lec t rons .  However, this type of e r r o r  i s  
usually quite small  and can be represented approximately for protons by 

This  assumption i s  not a s  

However, i t  i s  worth mentioning that the so  -called range 

0 E 0 . 0 1 5 R  , (42) R 

where o R  
the statist ical  fluctuation of the range about a mean range R (p.  662 ,  
[ 3 I ) .  This can be interpreted a s  meaning that 95% of monoenergetic 
protons should have a measured  range within about f 3yo of the theoretical  
range calculated from ionization losses  only. 
shielding calculations since the proton energy spectrum always contains 
uncertainties of a much grea te r  o rde r  of magnitude. This  e r r o r  i s  a l so  
in  keeping with the use of the approximation for the range introduced by 
the wri ter  (Eq.  14). Examination of the e r r o r  curves  in F i g .  2 shows 
that for  energies f rom l e s s  than 1 0  Mev to over 1000 Mev the coefficients 
(a, b ,  r )  can ,be chosen to maintain a maximum variation of l e s s  than 470 
from a n  accurate  theoretical  calculation. 

i s  the standard deviation of a Gaussian distribution depicting 

This is not a bad e r r o r  for 

In the t reatment  of nonelastic c r o s s  sections the wr i te r  has  
represented the c r o s s  section a s  a function of energy  and m a s s  number 
using an empir ical  expression which is  amenable to obtaining closed 
f o r m  solutions in the mathematical  operations which a r e  necessary  to 
obtain transmitted f l u x  and dose r a t e s .  
taining an accura te  expression f o r  c r o s s  sections i s  the lack of adequate 

The grea tes t  constraint  in ob-  
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experimental  nonelastic c r o s s  sections in the range of 5 Mev to 50 Mev 
f o r  protons. The re  a r e  a few values a t  widely separated ene rg ie s .  
However, the low-energy c r o s s  section seems  to resemble  that of 
neutrons to some extent and for  energies f rom 5Mev to 18 Mev the 
nonelastic c r o s s  section of neutrons taken f rom Troubetzkoy [ 4 ] were  
used €or the protons with a Coulomb correction in energy.  
low-energy c r o s s  sections were  blended into t h e  prGton nonelastic c r o s s  
section a t  higher energies .  
2000 MeV, the nonelastic c r o s s  section i s  fa i r ly  well represented  by the 
theoret ical  formula of Fernbach ,  Serber , and Taylor ,  

Then the 

F o r  proton energies  in  the range of 200 to 

1 
3 
- 

where R = roA is the radius of the ta rge t  nucleus 

(43) 2 c m  , 

with m a s s  number 
A , and K - '  i s  the mean f r e e  path i n  nuclear m a t t e r .  A s impler  e x -  
p re s s ion ,  determined by the author ,  which ag rees  well with experimental 
values,  as  well as  Eq.  (43), is given by 

0 . 7 3  

(5 = 0.38  (&) [ b a r n s ]  . 
ne (44) 

The r eason  for  choosing the ra t io  (A/27) in E q .  (44) is that  the non- 
e las t ic  c r o s s  sections for  aluminum (A=27) 
empir ica l  formulas  which a r e  developed below. The requirements  for  
such a formula a r e  that the values of the c r o s s  section should be zero 
at  zero  energy,  have a maximum between 5 and 25 MeV, and be approx 
imately a constant (asymptote) a s  the energy exceeds say 200 MeV. 

will be the bas i s  for  the 

Equation (45) 
in addition , to 

where d , f , g  

sati'sfies these requirements with some degree of success ,  
being ta i lored for  further mathematical  operations: 

0.73E2r + dEr 

one  (E) = 
EZr t fEr t g 

, (45) 

a r e  constants to be determined by curve fitting techniques 
and r (= 1 .  78) i s  the same power as  used in the range equation, (14). 
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Examination of Eq .  (45) shows that One(0) = 0 .  Also, a s  E becomes 
1-arge, ane (E)  + . 38 (A/27)-73 ; this i s  readily seen by dividing 
numerator and denominator of Eq .  (45) by EZr and letting E increase  
without bounds. In order  to require  that Eq .  (45) has  a proper maximum 
for some positive value of E = EM , the derivative of Eq .  (45) i s  equated 
to zero and Eq.  (46) i s  found; 

r - cg t fc2gz - cdfg t d2g' 
, d > c f ,  'M - d - cf 

where c = . 38 ( A / Z ~ ) . ~ ~  and the quantity under the radical  i s  2 0 .  
It should be pointed out that E q .  (45) has  a minimum for a negative 
value of E . In the variable E r ,  Eq .  (45) i s  a "serpentine" ( a s  en-  
countered in analytic geometry) which has  been t ranslated.  
the type of curve which i s  represented by Eq .  (45) i s  shown in F i g .  8 .  

In general ,  

\ 
\ 
\ 

CEZr  t dEr 
h o n e ( E )  = E L  t f E T  

I 
I 
I - E  

EM E = 2 0 0  

F igure  8 .  Nonelastic C r o s s  Section Formula  

In order  to determine the coefficients ( d , f , g )  of Eq .  (45) it i s  
sufficient to solve simultaneously the system of equations given by 
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2 
111) Xod - o o X o  f - CT o g  = xo ( 0 0 - c )  

and c = 0 . 3 8 ( ~ / 2 7 ) " ~ ~  . Equation I is  derived 
1 .78 

where X = E 
f rom E q .  (46) and Eqs.  I1 and I11 a r e  from Eq .  (45).  When A=27 
(aluminum), the following coefficients were  obtained: 

EM = 16 Mev with = 1 ba rn  and then requiring G o  = . 15 b a r n  at 
Eo = 5 MeV. for  protons we- e 
found by using the neutron data of Troubetzkoy [ 41 , and applying the 
relationship 

c = . 38; d = 88; 
f = -85; g = 1 2 ,  C C C .  TE,e ab9rv7e cE,sice deter rAiced  b x r  c o t t i n n  J --"I--- 6 

The est imated values of One (E < 20) 

w h e r e  R(z ,A)  is the Coulomb potential b a r r i e r ,  E the incident proton 
energy,  and CT, i s  the total  neutron nonelastic c r o s s  section taken f rom 
Ref.  [ 41 for  aluminum. Since for  high energies  (E > 200 MeV) the total  
nonelastic c r o s s  section is given by the s imple formula of Eq.  (44),  the 
same s o r t  of expression would be desirable for  all ,energies .  Hence the 
expression below is a n  attempt to derive such a n  expression: 

where 
No = Avogadro's number 
C = 8.479 x (27/A)' ' 2 7  , 
r = 1 . 7 8  , 

f = -84. 9 (A/27).221 = 84.  9 (A/27).39338 , and 
g = 11,996. 3 (A/27).442r = 12, 000 (A/27)*78676 

d = 1 .  9547 (A/27).221 - .27 = I .  9547 (A/27) 0.12338 
> 
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The wri ter  makes no claim to success  in finding a n  adequate 
representation. However, the accuracy  of Eq .  (49) is probably sufficient 
for  low-Z ma te r i a l s  (Z  < 30) .  F igure  9 shows the r e su l t s  of using the 
above fit for severa l  different A numbers .  F igure  10  is for One  (E)  
in  barns .  The r eve r sa l  of relative values between F ig .  9 and F ig .  1 0  
should be observed. 

In o rde r  to utilize the above equation in a computation, the 
following analysis  is  undertaken. 
cm2 -Mev] 
collisions a r e  considered, the energy spectrum of the p r imary  protons 
which get to a depth x(gm/cm2) 

If a proton energy flux (#),(E) [ protons/ 
i s  incident on a s lab of ma te r i a l ,  A ,  and i f  nonelastic 

should be given by 
f 

rlr ‘0. 

where $x(E ) i s  given by expressions such as  Eqs .  (29)  and ( 3 0 ) ,  and 
C .,. (x) i s  given by Eq.  (49) with the energy E depending on x a c -  
c ing to Eq .  (19)  o r ,  simply, &‘I; 

u x  1 1 /r 

2b 
E = ( Q e  - - )  

where 
1 - 2b 

2b a 
:% 

2 = (E t-) and v = 

The proSlem hinges on the ability to integrate the exponential of Eq .  (50). 
Hence the expression,  

2vx  
(52f 

(c - 2bd) - 4b (c - bd) OevX t 4c b2 Q2 e 

1 - 2bf t b2 g) - 4b ( 1  - bf) Qe 
E E $ ( X )  = V X  2v x 

t 4b2Q2e 

is obtained by substituting the energy t ransformation of Eq .  (51) into 
Eq .  (49). Now, make the following substitutions: 
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FIGURE i o .  PROTON NONELASTIC CROSS SECTIONS IN BARNS/ATOM 



dt 
2bQevX = t and dx = - 

v t  (d i s  differential h e r e )  ; 

o = c - 2 b d ;  t) = c - bd (d i s  a constant here)  ; 

cy = 1 - 2bf t 4b2g ; and 0 = 1 - bf . 

Then the integration of Eq .  (52)  can be represented  by 

0 '2bQ 

letting T = cy - 2Pt t t2  , we can write 

Equation (54) i s  now a se t  of standard fo rms  in most  handbooks. 
one observation should be made about the express ion  

Howe.v.er, 

q 4cu - 4 p 2  = 4b2 (4g - f 2 )  , (55) 

where the q , as  defined above, occurs in the handbook solutions to 
Eq.  (54 ) .  Since the factor occurs  in the handbook formulas ,  i t  
should be noted that 

4g > f 2  (56) 

m u s t  be sat isf ied in o rde r  to obtain a valid solution. 
i s  readi ly  sat isf ied a s  seen by examination of E q .  (49) .  A l s o ,  th is  
inequality de te rmines  the nature of the solution since a solution i s  
obtainable for 
obtain for  the solution of E q .  (51 ) ,  omitting details  of simplification: 

This  inequality 

fl but with a different mathematical  form.  Thus we 
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r 0 ' 
E,* 

*r 2 
G2 t ( A t ;  t BE ) 

. f  : k r  2 
G2 t (zt E ) 

dx 

(A t ?,i f BE'kr) - (i t;'kr) tan-'  tan-' 

DX t log 

c 

(57) t F  

where 

I 

a - (C-D) 
4b 

-. 

C - 2bd f 2  
D =  G = d g  -7 ' 1 - 2bf + 4b2g 

and 

F'= - a [ f ( D  - C) - 4bgD] , 
4bG 

The definitions of A and B a r e  given in Eq. (19).  The value D f  F 
i s  approximately 3. 35 x 
be some justification fo r  dropping the a rc t an  functions. 
assumption is  valid will be shown below. 

for  aluminum. Hence the re  appears  to 
That this  

In any case  we can wri te  

e 

x exp [ DX - F 

a - (C-D) 
4b 

I 
of simply i f  F t imes  the difference in the a rc t an  functions i s  sufficiently 
small ;  

3 0  



e 

a 
4b 
- (C - D) 

‘ f  :Fr 2 
G2 + ( T i -  E ) - DX 

- J ~ E : F ( x )  dx 

e 
(59) 

F igure  11 is presented in o rde r  to illustrate the integral  Over pene t ra -  
tion depth of the differential nonelastic c r o s s  section of the proton slowing 
down f rom ionization losses  and also the effect on the c r o s s  sections 
of the a rc t an  t e r m s  in  Eq .  (57). The curves  in F ig .  11 a r e  simply the 
integral  of Eq .  (57) divided by the depth x of penetration in aluminum. 
These curves  depict the energy dependence of the nonelastic c r o s s  
sect ions and exemplifies dramatically the effects of the ionization 10s se s .  
The dashed cu rves  show the resu l t s  obtained when the a r c t a n  t e r m s  
a r e  omitted.  
a function of the protons energy E” at the depth X in  aluminum. 
Pe rhaps  the next curve ,  F ig .  1 2 ,  presents the most  significant r e su l t s  
of the foregoing analysis.  Here Eq. (58) is  plotted for the same thick- 
n e s s e s  as shown in F i g .  11. 
exponential function (Eq. 58 o r  59) i s  ve ry  near ly  a constant over the 
total energy range for a given penetration thickness .  This  i s  a ve ry  
important  demonstration since the examination of F ig .  I 1  might lead 
one to infer that the use of E q .  (57) or equivalent i s  necessa ry  in o rde r  
to obtain a reliable flux calculation f o r  penetration thicknesses  l e s s  
than say  10 gm/cm2.  Actually, the relative e r r o r s  associated with 
using a constant c r o s s  section increase with depth so that & a  depth of 
50 g rams /cm2  the e r r o r  i n  the attenuation is  of g rea t e r  significance 
than a t  2 gm/cm2.  The major  problem assoc ia ted  with choosing a 
constant c r o s s  section i s  the c r o s s  section dependence on a given proton 
energy spec t rum.  However,  i t  i s  felt that an  approximation such as 
given in Eq.  (60) below i s  justified in view of the many uncertaint ies  
that exist  in any energy spectrum or the total proton intensity. 

I t  should be noted that the c r o s s  sect ions a r e  plotted as  
.lr 

Rather interesting is the fact  that the 

0.27 

ne (A) 0 . 0 1  (F] [$] . 

In Eq.  (60) the constant,  . 0 1 ,  may  be reduced to . 0 0 9  or l e s s  when 
X y  20  gm/crn2,  However, the nonelastic c r o s s  section, as  given by 
Eq .  (60), should be res t r ic ted  for  application to the attenuation of the 
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flux only. In o rde r  to es t imate  the production of secondary par t ic les ,  
Eq .  (49) should be used. Thus,  the intensity of nonelastic coll isions 
per Mev a t  energy E'k produced at the depth x i s  well approximated 
by the relationship: 

- .  G " 7  c ne 

.tr 

S ,  (E".) = 

flux 4JE':) i s  
follows that the 
x is  given by 

where the c r o s s  section En  (E'"JA) is given by Eq .  (49) .  
given by either Eq.  (29) o r  (30) .  F r o m  Eq .  (61), it 

The energy 

total number of nonelastic collisions per  gm a t  depth 

collisions L" I *  
However, the resu l t s  of Eq .  (62) a r e  not of importance since the quanti- 
t i es  desired a r e  actually the number and energy of secondary neutrons 
o r  protons produced a t  depth x . A further  discussion of secondaries  
will be t reated in the next chapter on dose r a t e s .  
the nature of the curves depicted by Eq .  (61), an incident spectrum of 
the form 

In order  to i l lustrate  

- P/Po 
N ( > p )  = N o e  J P >  P1 

(Eqs. 24 and 30) was chosen. 
in F ig .  13 .  
between the flux curve and the nonelastjc collision density curve.  
a constant c r o s s  section was  used €or Zne (E",A) the curves  i n  F ig .  14 
would be exactly paral le l .  

The r e su l t s  of this calculation a r e  shown 
The curve in F ig .  14 i l lustrates  the difference in shape 

If 

V. PROTON DOSE RATE CALCULATIONS 

The next s tep in this  development i s  to der ive expressions for  
the pr imary proton t issue dose o r  dose ra te  a s  a function of shield 
thickness and/or depth dose in t i s sue .  
For the general  case  af ter  penetrating a depth x in a shield the dose 
r a t e  i s  simply given b.y 

This  i s  obtained a s  follows. 
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where the energy  E" is taken a t  the penetration depth x . The S(E") 
is the stopping power in t i s sue  and i s  given by Eq. ( I ) .  See E q s .  (57)  
and (29)  o r  (30) for the f irst  two expressions in  the integrand. The 
is  a flux-to-dose conversion factor  depending on units of flux. The 
stopping power formula for  t issue can be made compatible with the 
approximating range equation, (14), in the following manner .  Using 
the definition of E q .  ( 2 ) ,  we s e e  that 

1 -___ - -  
dE 
dR 

S(E) = - - - 

o r  

where 
Using the approximations suggested in the previous chapter for  the non- 
e las t ic  c r o s s  sections we can wri te  the proton dose ra te  a f t e r  t r a n s -  
mitting severa l  l a y e r s  including tissue in  the las t  l ayer  in the following 
way: 

a,, bo, ro a r e  corresponding range coefficients fo r  t i s sue  (F ig .  15) 

where 

2 
-8 r ads -cm protons - 

F = 1 . 6 ~  10 if $(E") h a s  units of 
protons cm2  -MeV ' 
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o r  

:g protons 2 -5 r ads -cm -sec 
= 5 . 7 6 ~  10 if $ ( E  ) has  unit of h r  -proton cm2  -sec-Mev 

The flux 4 (E:%) is  given by either Eq. (29) o r  (30)  with the constants 
A*, B* defined for multiple l aye r s  as  shown in Eq.  (37). 
should be noted that the r power used in Ey.  (37) i s  constant for all 
layers ;  however,  the ro power used in the stopping power m a y  be 
different. In fact  in all calculations presented in this paper for dose 
the r is chosen to  be 1 .  78 for  the shielding ma te r i a l s ,  but ro i s  
1 .80  for  the stopping power in t issue.  
increase  i n  accuracy  with little lo s s  in computational speed when numeri 
ca l  integration methods a r e  employed. 
Eq .  (29) is used for  the energy flux, then fq-r each eneggy sector  of the 
spectrum confined between two energies Ei+l  and E i ,  another integral 
analogous to  Eq.  ( 6 5 ) ,  is  required,  but the integration limits change 
with the Hi, qi for  each sector .  However, this  is conveniently c a r r i e d  
out in  a numerical  integration process by using the coefficients Hi, qi  
which a r e  necessa ry  to  satisfy the limits of Eq .  (29) a t  the energy E'&. 
Very often it is useful to examine the integrand a s  a function of E*. 
this  manner ,  a feeling is obtained for the important energy regions in 
t e r m s  of dose. Also,  the slope of this curve should indicate the width 
of energy intervals  necessary  for an accurate  numerical  calculation. 
Thus,  the differential proton dose is calculated a s  follows: 

Also it 

This  flexibility permi ts  a smal l  

It should be pointed out that i f  

e,. 

In 

J 

Examples  of Eq.  (66) a r e  shown in F ig .  16 and 17. The proton 
dose a s  a function of depth, calculated f rom 'Eq .  (65) ,  is shown in F i g s .  
18 and 19. 
Est imated Dose"; this r e f e r s  to an  approximation of dose in r a d s  which 
c o r r e c t s  for the secondary protons and neutrons generated by nonelastic 
collisions. The correct ion is based on the observation that f o r  a shield 
of low-Z ma te r i a l s  the number of secondary protons and neutrons per 
nonelastic collision at energies  below around 200 Mev is l e s s  than one 
cascade particle of each kind (protons and neutrons) .  I 

observation and other considerations,  it became plausible to conjecture 
that if the nonelastic attenuation factor 

In the la t ter  two f igures ,  there  is  a curve labeled "Total 

With the above 

i s  omitted in the exp (-CneX) 
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dose calculation, then a correct ion is made for the secondary par t ic les .  
The foregoing is  the correct ion made in this  paper f o r  the calculations 
of the "total Est imated Dose,  ' I  Thus ,  

Total Es t .  Dose = P r i m a r y  Proton Dose x exp (Z1X1 +&X2 t . . . )  

(67) 

Of course such an approximation is only valid within cer ta in  fixed l imits  
of shield thickness,  Z number of t a rge t ,  and energy of colliding protons.  
However, to lend validity to the above assumption, F ig .  20  i s  presented.  
The secondary data in F ig .  20 were generated by C. W .  Hill of Lockheed 
[ 2 3. The interesting r e su l t  i s  that the approximation of Eq .  (67) i s  
ra ther  accurate  for  dose in r ads  for the thicknesses of aluminum shown. 
The approximation will probably become l e s s  dependable a t  g rea te r  
thicknesses,  but at these grea te r  depths the total dose is  substantially 
smaller and even a fa i r ly  large e r r o r  in estimating secondary cont r i -  
butions may be unimportant f rom a pract ical  point of view. Table I1 

I provides an  analysis  of F ig .  2 0 .  

The numerical  methods used in 
simply of the following technique: 

b N / f ( E ) d E  = A 
a k=  1 

ntegrat  

f ( k A  - 

ng Eq. (65) consisted 

I where 

b - a  

.b 

Since the independent variable (E") extends over such a large range,  
f rom 0 to over 1000 MeV, the summation of E q .  (68) is c a r r i e d  out in 
four separate sums s o  that the 
energies increase .  The number of t e r m s  in each sum is  an  input 
parameter which allows the user  of the code to establish his own 
accuracy. 

A can be increased in value a s  the 
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TABLE I1 

Data Analysis  

Z(grn/cm2) 

1 0  

15  

20 

25 

30 

- 
Dose of Total  Dose of 

P r i m a r y  P ro tons  Secondaries 

7 3 . 5  5 .  8 

36. 0 4 . 7  

2 1 . 5  4 . 2  

-14. 2 3 . 7  

1 0 . 0  3 . 4  

46 

Total  
Dose 

7 8 . 8  

4 0 .  7 

2 5 . 7  

17 .  9 

1 3 . 4  

P r i m a r y  Dose 
x exp ( .  OlZ)  

80 .  6 

41 .  8 

26.  2 

18 .  2 

1 3 .  5 

70 Diff. 

2 . 3  

2 . 7  

2 . 0  

1 . 7  

0 . 7 5  



Some useful simplifications in Eq.  (65)  can be made if a power 
law input spectrum (Eq.  29) is used.  Thus ,  the dose r a t e  i s  represented  

by 

.e. * 
where the A"., B a r e  defined for multiple l aye r s  in E q .  (37).  If we 
make the change of var iables  indicated by 

and 

then, 

D =  

af te r  simplification, we obtain the following: 

.I- 

rA"* 

r t1  - 
2bO 
aero t -  

r (S) 
.,. - r 

1 -A"'E; 

I *::p S i 
$1  

l/r 
t r -q i t2  dt } .  

2 
(1 -0 

-r 
A*E;+ 1 

1 -ro 
r 

t dt 
r-ro-qifd 
-r 

( 1  -t) 
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Now, making the substitutions, 

1 t r  -ro ro tq i  -2 m =  , n =  r r 

we obtain, af ter  some additional simplification, 

-r 
1 -A"Ei+l 

- 
(1 -$-l dt 

F exp ( -qx1 -c,x,- . . . ) H; 

aor,rA B" 

tm - 1 D =  *- q-2 1/r 

.t. 
T r 

where the lower l imit  is  set  to zero if A':'? E i  . This  condition is 
m e t  when the minimum proton energy Ei  
than the minimum shield thickness .  F o r  example,  if Ei = 30 MeV, then 
any aluminum thickness g rea t e r  than 1 .  175 gm/cm2 would cause  the 
lower limit to be zero.  Thus,  one can always choose a thickness of 
shield so that the integral  of Eq .  (73) may be writ ten as: 

h a s  a range equal to or  l e s s  

r0 B* 7 -r 
, $ I =  (A':: - ) and CY = 1 - A " E i t l .  

F e x p ( - x l X 1  - z z X 2  - . . . ) H i  
J-q-2 -6- - .~ 1/, $ =  

a o r o r A  B" 
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However, the integrals a r e  now recognized as incomplete beta functions. 
Thus,  one may  wr i te  the dose a s  simply 

Now, i f  the assumption is made that the initial upper energy l imit  
E i + l  i s  sufficiently large,  then the value of Q approaches 1.  Thus,  
the fur ther  simplification in t e r m s  of gamma functions is made: 

If the stopping power coefficient bo fo r  t issue i s  set  to zero  we get 
simply: 

Equation (77) should be used when n:kI 0 ,  (q 5 2 ) .  Finally,  i f  all bi 
a r e  set  to  zero  for the range coefficients, then B"=l 
X2 /a2 t . . , ; 
model for proton dose ra te  calculations (See Eq.  1 3 .  ) ,  

and A" = Xl/a, t 
and if  ro = r ,we obtain the vers ion  of the s implest  feasible 

D 
r t q - 2  

't-t x x2 . . .  r l r t q - '  r 1 
a1 a 2  

The above'equations have the defect that the incident proton energy 
spec t rum is represented  by only one power function 
and in E q .  (78) the range is  depicted by the simple relation R = aEr  . 
However, the resu l t s  obtained by using Eq .  (76) a r e  quite impress ive  
as  is demonstrated in F igs .  2 1 ,  2 2 ,  and 23 by comparison to Alsmil ler  
[ 5 ]  and Hill [ 2 ]  . In o rde r  to further validate the use  of Eq .  (76),  the 
compar ison  of resu l t s  using Eq.  (76) and the same calculation using 
Eq .  (65) with a numerical  integration technique given by Eq.  (68) i s  

(bo(E) = HE -q,  E > Eo 
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made in F ig .  24. F igure  24 depicts the relative e r r o r  between the 
gamma function computation (Dr) and the numerical  method (Dnum). 
F o r  a shield thickness l e s s  than about 40 gm/crn2 the D r  is  about 
1/470 higher than the This is probably due to the systematic 
e r r o r  introduced in the numerical  method which can be improved by 
taking m o r e  t e r m s .  (The numerical  method used 55 s teps  between 0 
and 1000 Mev. )  However, a s  the thickness inc reases  above 40 gm/cm2,  
the relat ive e r r o r  increases  m o r e  rapidly. This  i s  due to two fac tors .  
The first is the fact that the gamma function r ep resen t s  an  integration 
f rom an energy of zero to infinity. 
stopping power formula in t issue (Eq. 64) becomes a ve ry  poor approx-  
imation above 2000 MeV, result ing in a factor of s ix  over estimation 
at 10, 000 MeV. One solution would be to  ref i t  the stopping power formula 
with m o r e  t e r m s  so that a m o r e  valid approximation i s  found for energ ies  
above 2000 MeV. However, i t  follows f rom consideratiqns of the proton 
differential spectrum that as  E" exceeds 1000 MeV, the proton number 
approaches zero  very rapidly. Hence, the r e su l t s  shown in F i g ,  24 
imply that even for a thickness of 100 gm/crn2 of aluminum the relative 
e r r o r  due to the poor estimation of stopping power above 2000 Mev 
re su l t s  i n  only a smal l  over -estimate of dose depending fair ly  strongly 
on the power of the spectrum. F o r  example, in F ig .  2 2 ,  with q = -4 .6  
the est imated e r r o r  at 100 grn/cm2 due to  e r r o r  in  the stopping power 
above 1000 Mev 
when q = -3 .95 this e r r o r  i s  about 1%. The remaining differences 
can be explained by the integration to  infinity for the gamma function, 
and the numerical  integration e r r o r  of about 1/4vo in Eq .  (65). 

Dnum . 

The second i s  the fact  that the 

leads to about a 1/2'3'0 over es t imate  in dose,  whereas  

The foregoing analysis gave an indication of the numerical  e r r o r s  
which occur in the proton dose r a t e  calculation. 
portant source of e r r o r  i s  often ignored in such discussions.  
happens if the range energy data i s  systematically in e r r o r  by some 
smal l  amount? Analysis by the author has  found that,  in general ,  if 
the range i s  'consistently low o r  high by, s ay ,  x%, then the dose is  
consistently low o r  high byabout 2x70. 
is reflected twice a s  grea t  in the dose calculation. 
foregoing is presented in F ig .  25, and a detail e r r o r  analysis  of this  
f igure and two other systematic e r r o r s  a r e  shown in Table 111. 

However, a very  i m -  
What 

Thus a systematic e r r o r  in range 
An example of the 

The r e su l t s  of Table 111, however, have one consoling aspec t  
and this i s  that the e r r o r s  a r e  approximately uniformly displaced f rom 
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-- 

gm/cm2 

4 . 5  

9 . 0  

18 .0  

27. 0 

5 4 . 0  

81 .0  

108.0 

TABLE 111 

Comparison of Relative E r r o r s  in P r i m a r y  Proton Dose 
Where the Proton Range Has Been 

Systematically Under - o r  Over -Estimated 

.l. 

Do s e "* f o r 
Accurate 
Range 

3 . 3 3 1 ~ 1 0 ~  

7 . 3 8 7 ~ 1  O 2  

1 . 5 6 4 ~ 1  O 2  

6 . 0 7 2 ~ 1 0 '  

1 . 0 6 8 ~ 1 0 '  

3 .437~10 '  

1.41 5x1 @ 

R e lative 
E r r o r  

'or + 5OJo:;:::: 

t. 1010 

t. 1 0 1 0  

t. 1012 

t. 1013 

t .  1C18 

t. 1026 

t. 1035 

R elative 
E r r o r  

for  - 570 

- .  1104 

- .  1 1 0 5  

- .  1106 

- .  1107 

- .  1 1 1 2  

- .  1119 

-. 1 1 2 7  

R e lative 
E r r o r  
f o r  t 10% 

t. 2225 

t .  2225 

t .  2228 

t .  2 2 3 1  

t .  2242 

t .  2258 

t .  2276 

Relative 
E r r o r  

for  -10% 
__ 

- .  1988 

-.  1988 

- .  1091 

- .  1993 

- .  2coo 

- .  2016 

- .  203 1 

- 
Relative 
E r r o r  
for t 1 570 
- 

t .  3425 

t .  3427 

t .  3430 

t .  3435 

t .  3452 

t. 3476 

t .  3505 

__-- 

__--- 
Relative 
E r r o r  
for -1570 

- .  2900 

- .  2901 

- .  2905 

- .  2907 

- .  2922 

- .  2939 

-.  2962 

J. ,I. 

15 E - 3 . 9 5  protons/cm2 MeV. 4 o(E)  = 6 .  894x1 0 Rads  at center of sphere ; 

Relative e r r o r  in dose when range i s  5% too high but the stopping power in 
t i s sue  is c o r r e c t .  

.*. .*. ,,. ,,. 
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the cor rec t  calculations. of the 
Bethe -Bloch range energy calculations va ry  randomly from the t rue  
proton range so  that the e r r o r  is periodic f rom say  +5% to -5% and 
oscillating severa l  t imes  between 10 Mev and 1000 MeV, then the above 
type e r r o r  in  the dose calculation might well approach zero.  

Thus one hopes that the deviations 

A s  a final presentation in this  section on Proton Dose Ra te s ,  
a cursory analysis was  made  of solar proton events presented in Ref . [  61 
by  W.R.  Webber of the University of Minnesota. 
pseudo-average f l a r e  based on data f rom 1956 through 1962. 
is represented by the integral  r igidity spectrum 

The r e su l t  was  a 
This f l a r e  

N ( > p )  = 2 . 5 ~ 1 0 ~  e - % [ prqtons 1 (79) cmz -flare ’ 

where p is in units of MV (million volts) ,  Rather interesting is  the 
fact  that even though the above f la re  is so r t  of an  average ,  the probability 
i s  only 0.  025 that a more  intense f la re  occurred  during any one-week 
period between 1956 and 1962. Thus one could a s sume  that the above 
flare represents  a model for  proton f l a r e s  per  week with a .975 probability 
that the calculated doses will not be exceeded. The dose r a t e s  for  the 
above spectrum at the center  of a spherical  enclosure of variable a lum-  
inum thicknesses is presented in F ig .  26.  

VI. ISOTROPIC INCIDENT PROTON FLUX ON SLABS 

In the foregoing the calculations were  for normal  incident protons 
on plane s labs .  
at the center of spheres  the computational geometry is for a monodirec- 
tional normal  incident flux. If one wishes to extend the above calculations 
to oblique incidence, the only change necessary  is that the slab l aye r s  
Xi be replaced by the thickness along the slant path of the oblique proton 
flux. Thus,  the slant thickness i s  simply 

Even though the calculations a r e  denoted as  dose r a t e s  

p i  = X ~ / C O S  e o  , (80) . 
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where 8 ,  
of the proton flux. Thus it would be fairly s imple,  for  any incident 
angular distribution, to caiculate the dose r a t e  at a given depth by ca l -  
culating the proper solid angle weighting function and employing only 
the dose r a t e  data for  normal  incidence. Thus,  for the isotropic in -  
cident case  one sees  that if the normal  incident dose,  D(Xi) ,  is  calculated 
for the omnidirectional flux, then the pr imary proton dose r a t e  fo r  the 
isotropic incident flux on a s lab i s  given by 

i s  the angle between the slab normal  and the angle of incidence 

1 

DIso. = Z a J  -p 1 ( -&)dcosL  
0 

o r  numerically the simple summation 

N 

- - 

i= 1 
DIso. 2N 

where 

1 
N cos O i  = - (i - $1 * 

The above increment in cos  8 represents  taking the ith dose component 
a t  the midpoint of the ith solid angle. A l s o ,  the use of Eq. (82) would 
embody utilizing interpolation in a precalculated table of dose as  a function 
of thickness.  The above method was not utilized in  the foregoing ca l -  
culations even though it mer i t s  consideration a s  a computational method. 
The dose for an isotropic incident proton flux on a slab was calculated 
by employing numerical  integration on the double integral  below: 

where the 
calculated using 
The r e su l t s  of the isotropic incident proton slab calculations a r e  presented 
in F i g s .  27  through 32.  In F i g ,  27 ,  a comparison is  made with Alsmi l le r ’s  

p = X/cos 8 and the calculations of B*,A* (Fig.  7) a r e  
p i  = Xi/cos 8 i  for the slab penetration thicknesses.  
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work [ 51 . The agreement  s eems  rather good. F igu res  28 and 29 
a r e  presented to paral le l  the treatments given in the previous chapters  
of this  repor t  fo r  the same incident rigidity spec t rum.  Of course ,  the 
differential flux and dose/Mev a r e  defined the same a s  previously ex-  
cepting that an integration was performed over direction for the i so -  
tropic s lab case .  
for the same incident flux a s  shown i n F i g s .  28 and 29 .  F igure  31 i s  
presented mere ly  to  emphasize the difference between two geometr ies  
and compare the pr imary  dose of F ig .  18 with that of F ig .  30. It should 
be noted-that at X = 0 gm/cmz depth, the isotropic dose on a s lab  i s  
1/2 the dose at the center of a sphere.  Thus,  there  i s  a systematic 
difference of a factor of two due to the difference of a 27i- space and 
a 47r space in the inferred solid angle integration. 
complete the isotropic incidence analysis.  Here the dose/steradian is 
presented for  severa l  thicknesses of aluminum ranging f rom 1 gm/cmz 
to 50 gm/crn2 in F ig .  33. 
are  probably small  since the straight-ahead model used in proton pene- 
t ra t ion calculations permi ts  fa i r ly  simple numerical  methods for even 
complex geometr ies .  However, the curves do indicate the relative 
significance of the direction of incidence on the p r imary  proton dose 
in finite s labs .  The integration over solid angle of these curves gives 
the data points shown in F ig .  30. The curves in F i g s .  32 and 33 indicate 
c lear ly  that c a r e  should be exercised in an  a r b i t r a r y  assumption such 
as  any proton with an angle of incidence grea te r  than 45' to the normal  
can be ignored. 
feel  i t  necessa ry  to  consider angles a s  large a s  70' (cos 8 = . 34) in 
o rde r  to obtain a reliable integration over angle. 
F i g s .  32 and 33 on the t reatment  of complex geometr ies  leads one to 
recognize that relatively large proton fluxes may  enter  a detector a t  
r a the r  oblique angles measured from the vehicle surface normal ,  
par t icular ly  if the vehicle walls a r e  relatively thin. A study of m o r e  
complex geometry effects is given by the wr i te r  in the r epor t  "F la re  
Proton Doses Inside Lunar Structures" [ 7 1  . Three  examples taken 
f rom this repor t  a r e  shown in F igs .  34 and 36. The incident proton 
flux in these calculations was a s s  e d  to be isotropic and the rigidity 
spectrum ~ ( > p )  = 4.54 x 10" e v80 used throughout this repor t  
was  assumed.  The dose calculations in F i g s .  34, 35, and 36 a r e  based 
on the "Total Est imated Dose, " which includes secondaries .  

F igure  30 presents  the double integration of Eq.  (83) 

F igu res  32 and 33 

The possible applications of this  type data 

F o r  example, even f o r  10  g m / c m 2 ,  one would probably 

The implications of 
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VI1 . CONCLUSIONS 

One of the difficulties in an analysis of the type presented in 
the preceding pages is finding a point at  which to stop. 
a r e a s  which have been menticned but n o t  subjected to adequate study. 
For example,  the examination of multiple layer  shields and depth dose 
in t i s sue ,  a s  well a s  the tedious problem of treating secondary particle 
production fract ions and their  attenuation in a shield. However, it  is 
,,,,,d that usab le  shert cuts  2nd i a s igh t  into var inus zspectc nf nrotnr? r 

shielding have been made.  Also,  it is hoped that adequate information 
has  been presented in the report  for determining the validity of the 
r e su l t s  obtained and the scope of applications of the suggested approxi- 
mations.  

There  a r e  severa l  

I, e...,., 

* 

The computer codes used in the foregoing work a r e  writ ten in 
F o r t r a n  and a r e  available to anyone interested.  The proton dose ra te  
code i s  capable of treating up to ten layers of different mater ia l s  and 
takes  directly either the coefficients of the integral  rigidity spectrum 
(P in Million volts) o r  the power law representation of the differential 
spectrum (protons/cm2 -MeV-sec). 
broken into a s  many a s  ten segments o r  energy groups.  The output i s  
ra ther  extensive depending on the users '  needs.  Thus,  differential 
flux, dose,  and nonelastic collision density can be found a s  a function 
of the proton's energy inside the shield. If a choice i s  made to t r ea t  
isotropic incidence of protons on a slab, the angular distribution of the 
t ransmit ted proton dose i s  printed out for up to 20 increments  in the 
angle 6 measured from the slab normal. The grea tes t  virtue of the 
above codes i s  the lack of large amounts of input data since the approxi- 
mations discussed in this repor t  a r e  utilized wherever there  i s  no r ea l  
compromise in accuracy.  

The power law spectrum can be 

t 
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